About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AMIA Annual Symposium
Paper
Mining Disease-Symptom Relation from Massive Biomedical Literature and Its Application in Severe Disease Diagnosis
Abstract
Disease-symptom relation is an important biomedical relation that can be used for clinical decision support including building medical diagnostic systems. Here we present a study on mining disease-symptom relation from massive biomedical literature and constructing biomedical knowledge graph from the relation. From 15,970,134 MEDLINE/PubMed citation records, occurrences of 8,514 disease concepts from the Human Disease Ontology and 842 symptom concepts from the Symptom Ontology and their relation were analyzed and characterized. We improve previous disease-symptom relation mining work by: (1) leveraging the hierarchy information of concepts in medical entity association discovery; and (2) including more exquisite relationship with weights between entities for knowledge graph construction. A medical diagnostic system for severe disease diagnosis was implemented based on the constructed knowledge graph and achieved the best performance compared to all other methods.