About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2003
Conference paper
Minimum verification error training for topic verification
Abstract
In this paper we propose a new formulation of minimum verification error training and apply it to the problem of topic verification as an example. In topic verification, a decision is made as to whether a document truly belongs to a particular topic of interest. Such a decision typically depends on a comparison between a model for the desired topic and a model for background topics, using a decision threshold. We propose modeling the background topics as a cohort model consisting of a weighted combination of the ]M closest topics discovered from the training data. The weights and the decision threshold are optimized using the generalized probabilistic descent algorithm to explicitly minimize the verification error rate, which is defined to be a weighted sum of the Type I (false rejection) and Type II (false acceptance) errors.