About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SCOPES 2019
Conference paper
Memory and Parallelism Analysis Using a Platform-Independent Approach
Abstract
Emerging computing architectures such as near-memory computing (NMC) promise improved performance for applications by reducing the data movement between CPU and memory. However, detecting such applications is not a trivial task. In this ongoing work, we extend the state-of-the-art platform-independent software analysis tool with NMC related metrics such as memory entropy, spatial locality, data-level, and basic-block-level parallelism. These metrics help to identify the applications more suitable for NMC architectures.