Strong and flexible domain typing for dynamic E-business
Yigal Hoffner, Simon Field, et al.
EDOC 2004
A μ-[n × n, k] array code C over a field F is a k-dimensional linear space of n X n matrices over F such that every nonzero matrix in C has rank μ. It is first shown that the dimension of such Σarray codes must satisfy the Singleton-like bound k ≤n(n-μ + l). A family of so-called maximum-rank μ-[n× n, k = n(n-μ + 1)] array codes is then constructed over every finite field F and for every n and μ, 1 ≤ μ ≤ n. A decoding algorithm is presented for retrieving every T Ñ”c, given a “received” array T + E, where rank(E)= t ≤(μ-1)/2. Maximum-rank array codes can be used for decoding crisscross errors in n X n bit arrays, where the erroneous bits are confined to a number t of rows or columns (or both). Our construction proves to be optimal also for this model of errors, which can be found in a number of applications, such as memory chip arrays or magnetic tape recording. Finally, it is shown that the behavior of linear spaces of matrices is quite unique compared with the more general case of linear spaces of n × n ×.×n hyper-arrays. © 1991 IEEE
Yigal Hoffner, Simon Field, et al.
EDOC 2004
Ziyang Liu, Sivaramakrishnan Natarajan, et al.
VLDB
Yvonne Anne Pignolet, Stefan Schmid, et al.
Discrete Mathematics and Theoretical Computer Science
Gabriele Dominici, Pietro Barbiero, et al.
ICLR 2025