About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Computer Vision and Image Understanding
Paper
MAEDAY: MAE for few- and zero-shot AnomalY-Detection
Abstract
We propose using Masked Auto-Encoder (MAE), a transformer model self-supervisedly trained on image inpainting, for anomaly detection (AD). Assuming anomalous regions are harder to reconstruct compared with normal regions. MAEDAY is the first image-reconstruction-based anomaly detection method that utilizes a pre-trained model, enabling its use for Few-Shot Anomaly Detection (FSAD). We also show the same method works surprisingly well for the novel tasks of Zero-Shot AD (ZSAD) and Zero-Shot Foreign Object Detection (ZSFOD), where no normal samples are available.