About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Loss of anisotropy in strained ultrathin epitaxial L10 Mn-Ga films
Abstract
We have investigated the magnetization and loss of anisotropy in ultrathin strained and unstrained Mn-Ga films at room temperature. Two Mn-Ga compositions, one of which is doped with Co, were grown on Cr buffered MgO (001) substrates. Films with a thickness below 10 nm are highly strained and the ratio c/a vs. thickness is depending on composition. The perpendicular magnetic anisotropy is shown to be drastically reduced with decreasing thickness and increasing strain. These findings should be considered when generalizing and downscaling results obtained from films > 20 nm. The strain can effectively be reduced by introducing an additional Pt buffer and thus maintaining a high perpendicular magnetic anisotropy for a thickness as low as 6 nm. © 2013 AIP Publishing LLC.