David B. Mitzi
Journal of Materials Chemistry
The standard Metropolis Monte Carlo is used to simulate thermal magnetization decay in ensemble of interacting and non-interacting particles. The fitting of demagnetization curves to simple Neel-Arrhenius model, using the volume distribution, suggests that in a non-interacting case one Monte Carlo step is proportional to a square root of time. The same dependence arises from the consideration of magnetic particle moving in the external potential according to Brownian dynamics. This constitutes the basis of the so-called Monte Carlo with quantified time step. The analytical calculations show that the method works reasonably in the case of small-to-intermediate size barriers and for a high anisotropy system. The application of the method to magnetic recording media reveals qualitatively the same dependence on the exchange parameter as obtained by kinetic Monte Carlo. © 2002 Elsevier Science B.V. All rights reserved.
David B. Mitzi
Journal of Materials Chemistry
P. Martensson, R.M. Feenstra
Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
Mitsuru Ueda, Hideharu Mori, et al.
Journal of Polymer Science Part A: Polymer Chemistry