About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AVSS 2014
Conference paper
Long-term object tracking for parked vehicle detection
Abstract
We develop a robust approach to detect parked vehicles in real time. Our approach particularly focuses on tracking vehicles in long term under challenging conditions such as lighting changes and occlusions. Vehicle tracking is performed by template matching based on fast-computed corner points. The template model is made self-adaptive over time to accommodate lighting changes. We also present an effective way to manage and track multiple vehicles when they are parked close together and occlude one another. We demonstrate the effectiveness of our approach on the challenging i-LIDs data set and another large one collected from real-world scenarios.