About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Queueing Systems
Paper
Linear independence of root equations for M/G/1 type Markov chains
Abstract
There is a classical technique for determining the equilibrium probabilities of M/G/1 type Markov chains. After transforming the equilibrium balance equations of the chain, one obtains an equivalent system of equations in analytic functions to be solved. This method requires finding all singularities of a given matrix function in the unit disk and then using them to obtain a set of linear equations in the finite number of unknown boundary probabilities. The remaining probabilities and other measures of interest are then computed from the boundary probabilities. Under certain technical assumptions, the linear independence of the resulting equations is established by a direct argument involving only elementary results from matrix theory and complex analysis. Simple conditions for the ergodicity and nonergodicity of the chain are also given. © 1995 J.C. Baltzer AG, Science Publishers.