About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Operations Research
Paper
Likelihood ratio sensitivity analysis for Markovian models of highly dependable systems
Abstract
This paper discusses the application of the likelihood ratio gradient estimator to simulations of large Markovian models of highly dependable systems. Extensive empirical work, as well as some mathematical analysis of small dependability models, suggests that (in this model setting) the gradient estimators are not significantly more noisy than the estimates of the performance measures themselves. The paper also discusses implementation issues associated with likelihood ratio gradient estimation, as well as some theoretical complements associated with application of the technique to continuous-time Markov chains.