About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACL-IJCNLP 2015
Conference paper
Learning hybrid representations to retrieve semantically equivalent questions
Abstract
Retrieving similar questions in online Q&A community sites is a difficult task because different users may formulate the same question in a variety of ways, using different vocabulary and structure. In this work, we propose a new neural network architecture to perform the task of semantically equivalent question retrieval. The proposed architecture, which we call BOW-CNN, combines a bag-ofwords (BOW) representation with a distributed vector representation created by a convolutional neural network (CNN). We perform experiments using data collected from two Stack Exchange communities. Our experimental results evidence that: (1) BOW-CNN is more effective than BOW based information retrieval methods such as TFIDF; (2) BOW-CNN is more robust than the pure CNN for long texts.