About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
Large-scale simulations of a-Si:H: The origin of mdgap sates rvisited
Abstract
Large-scale classical and quantum simulations are used to generate a-Si:H structures. The bond-resolved density of the occupied electron states discloses the nature of microscopic defects responsible for levels in the gap. Highly strained bonds give rise to band tails and midgap states. The latter originate mainly from stretched bonds, in addition to dangling bonds, and can act as hole traps. This study provides strong evidence for photoinduced degradation (Staebler-Wronski effect) driven by strain, thus supporting recent work on a-Si, and sheds light on the role of hydrogen. © 2011 American Physical Society.