About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
WSC 2017
Conference paper
Large-SCALE DISTRIBUTED AGENT-BASED SIMULATION for SHOPPING MALL and performance improvement with shadow agent projection
Abstract
In this paper, we introduce the agent-based simulation of a shopping mall with walking and purchasing behavior model and consider the performance of distributed parallel execution. To utilize the agent-based simulation for decision support, distributed parallel execution of large-scale agent-based social simulations is important for evaluating the complex behavior of a realistic number of people with acceptable performance. For this purpose, today's agent-based simulation frameworks often provide the functionality to transfer agents from one node to another. However, intelligent social agents tend to contain a large amount of data including demographics, preferences, and history. Hence, the transfer of such an agent incurs a heavy communication cost that has an adverse effect on performance. To improve the performance of distributed agent-based simulation, we introduce a shadow agent that is a lightweight entity projected among nodes with only required information such as the position and speed required to calculate interaction between agents.