About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
COLING 2016
Conference paper
Language independent dependency to constituent tree conversion
Abstract
We present a dependency to constituent tree conversion technique that aims to improve constituent parsing accuracies by leveraging dependency treebanks available in a wide variety in many languages. The technique works in two steps. First, a partial constituent tree is derived from a dependency tree with a very simple deterministic algorithm that is both language and dependency type independent. Second, a complete high accuracy constituent tree is derived with a constraint-based parser, which uses the partial constituent tree as external constraints. Evaluated on Section 22 of the WSJ Treebank, the technique achieves the state-of-the-art conversion F-score 95.6. When applied to English Universal Dependency treebank and German CoNLL2006 treebank, the converted treebanks added to the human-annotated constituent parser training corpus improve parsing F-scores significantly for both languages.