About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
In this paper, we study the problem of identifying the impulse response of a linear time invariant (LTI) dynamical system from the knowledge of the input signal and a finite set of noisy output observations. We adopt an approach based on regularization in a reproducing kernel Hilbert space (RKHS) that takes into account both continuous- and discrete-time systems. The focus of the paper is on designing spaces that are well suited for temporal impulse response modeling. To this end, we construct and characterize general families of kernels that incorporate system properties such as stability, relative degree, absence of oscillatory behavior, smoothneß, or delay. In addition, we discuß the poßibility of automatically searching over these claßes by means of kernel learning techniques, so as to capture different modes of the system to be identified.