About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NAACL-HLT 2007
Conference paper
Joint morphological-lexical language modeling for machine translation
Abstract
We present a joint morphological-lexical language model (JMLLM) for use in statistical machine translation (SMT) of language pairs where one or both of the languages are morphologically rich. The proposed JMLLM takes advantage of the rich morphology to reduce the Out-Of-Vocabulary (OOV) rate, while keeping the predictive power of the whole words. It also allows incorporation of additional available semantic, syntactic and linguistic information about the morphemes and words into the language model. Preliminary experiments with an English to Dialectal-Arabic SMT system demonstrate improved translation performance over trigram based baseline language model.