Publication
INTERSPEECH 2017
Conference paper

Joint learning of correlated sequence labeling tasks using bidirectional recurrent neural networks

View publication

Abstract

The stream of words produced by Automatic Speech Recognition (ASR) systems is typically devoid of punctuations and formatting. Most natural language processing applications expect segmented and well-formatted texts as input, which is not available in ASR output. This paper proposes a novel technique of jointly modeling multiple correlated tasks such as punctuation and capitalization using bidirectional recurrent neural networks, which leads to improved performance for each of these tasks. This method could be extended for joint modeling of any other correlated sequence labeling tasks.

Date

20 Aug 2017

Publication

INTERSPEECH 2017

Authors

Share