About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJERPH
Paper
Interactive Simulation of Nonpharmaceutical Interventions of Airborne Disease Transmission in Office Settings
Abstract
The COVID-19 pandemic has caused major disruptions to workplace safety and productivity. A browser-based interactive disease transmission simulation was developed to enable managers and individuals (agents) to optimize safe office work activities during pandemic conditions. The application provides a user interface to evaluate the impact of non-pharmaceutical interventions (NPIs) policies on airborne disease exposure based on agents’ meeting patterns and room properties. Exposure is empirically calibrated using CO2 as a proxy for viral aerosol dispersion. For the building studied, the major findings are that the cubicles during low occupancy produce unexpectedly high exposure, upgrading meetings to larger rooms reduces total average exposure by 44%, and when all meetings are conducted in large rooms, a 79% exposure reduction is realized.