About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS Applied Energy Materials
Paper
Influence of Copper Composition on Cu2BaSn(S,Se)4Solution-Deposited Films and Photovoltaic Devices with over 5% Efficiency
Abstract
Cu2BaSn(S,Se)4is currently in the spotlight for prospective environmentally friendly, stable, thin-film solar cell application, with demonstrated device power conversion efficiency (PCE) exceeding 5% for vacuum-deposited absorbers. As suggested by first-principles calculations, experimental studies involving related Cu2ZnSn(S,Se)4and Cu(In,Ga)(S,Se)2absorbers prove that the detailed chemical composition typically plays a sensitive role in altering defects and electronic properties of these complicated compound semiconductors. Herein, the copper composition of Cu2BaSn(S,Se)4has been systematically modified, employing a solution-based deposition approach, to provide a more complete picture of the phase stability and optoelectronic property sensitivity for this material. X-ray diffraction and scanning electron microscopy show that phase purity is preserved over a film Cu content range of nominally 0.94 ≤ [Cu]/[Ba + Sn] ≤ 1.01. Terahertz spectroscopy and Hall effect measurements reveal that the majority carrier hole density of ∼1013cm-3and mobility (∼5 cm2/V s), as well as the minority carrier lifetime (a bulk lifetime of 180 ps and a surface recombination velocity >106cm/s), are nominally independent of Cu content. The champion PCEs exceed 4.7% for all copper compositions in the phase-pure region, with a record value of 5.1%, similar to the reported values for record vacuum-deposited devices. These results suggest that Cu2BaSn(S,Se)4films and solar cells (at the current performance level) may be less sensitive to Cu stoichiometry compared to kesterite materials and therefore may provide a more stable material platform to prepare thin-film solar cells.