About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
Constraints are important, not only for maintaining data integrity, but also because they capture natural probabilistic dependencies among data items. A probabilistic XML database (PXDB) is the probability subspace comprising the instances of a p-document that satisfy a set of constraints. In contrast to existing models that can express probabilistic dependencies, it is shown that query evaluation is tractable in PXDBs. The problems of sampling and determining well-definedness (i.e., whether the aforesaid subspace is nonempty) are also tractable. Furthermore, queries and constraints can include the aggregate functions count, max, min, and ratio. Finally, this approach can be easily extended to allow a probabilistic interpretation of constraints. © 2009 ACM.