About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
In situ x-ray-scattering studies of polymorphic crystallization of metal-boron glasses
Abstract
Time-resolved x-ray scattering has been used to study the isothermal crystallization kinetics of the binary metal-boron glasses Co2B, Fe76B24, and Co3B, for crystallization times as short as 1 s. For alloys which crystallize into a single phase, a simple model of the transformed volume fraction, based on steady-state homogeneous nucleation of crystallites which then grow at a constant rate, explains the results. There is no evidence for a transient in the nucleation. A one-parameter fit to the slowest diffraction data allows volume fractions as small as 10-4 to be measured. The observed crystallization kinetics agree well with calorimetric and resistivity measurements. For each alloy, the kinetics are well described by a single activation energy, even at the highest transformation rates. For alloys which crystallize into a single phase, the transformation curves can be scaled onto each other by renormalizing the transformation time. Comparisons are drawn between the behavior of these metal-metalloid glasses and previously studied metal-metal systems. © 1993 The American Physical Society.