About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
COLING 2004
Conference paper
Improving a statistical MT system with automatically learned rewrite patterns
Abstract
Current clump-based statistical MT systems have two limitations with respect to word ordering: First, they lack a mechanism for expressing and using generalization that accounts for reorderings of linguistic phrases. Second, the ordering of target words in such systems does not respect linguistic phrase boundaries. To address these limitations, we propose to use automatically learned rewrite patterns to preprocess the source sentences so that they have a word order similar to that of the target language. Our system is a hybrid one. The basic model is statistical, but we use broad-coverage rule-based parsers in two ways - during training for learning rewrite patterns, and at runtime for reordering the source sentences. Our experiments show 10% relative improvement in Bleu measure.