About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NAACL-HLT 2016
Conference paper
Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence
Abstract
In a multi-label text classification task, in which multiple labels can be assigned to one text, label co-occurrence itself is informative. We propose a novel neural network initialization method to treat some of the neurons in the final hidden layer as dedicated neurons for each pattern of label co-occurrence. These dedicated neurons are initialized to connect to the corresponding co-occurring labels with stronger weights than to others. In experiments with a natural language query classification task, which requires multi-label classification, our initialization method improved classification accuracy without any computational overhead in training and evaluation.