About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Solid-State Electronics
Paper
Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors
Abstract
We present experimental studies on the performance of ultra-thin body SOI tunnel FETs depending on channel length, gate oxide thickness and source/drain doping concentrations. Electrical measurements show no dependance on channel length, however, a strong dependance on gate oxide thickness and doping concentration is found. Our experimental results match calculations based on a simple Landauer model employing the Wenzel-Kramer-Brillouin approximation for the tunneling process. Bandgap narrowing and the electrostatics of the tunneling junction are found to be the main factors impacting the on-state performance of the tunnel FET. © 2009 Elsevier Ltd. All rights reserved.