About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NAACL-HLT 2003
Conference paper
Identifying and tracking entity mentions in a maximum entropy framework
Abstract
We present a system for identifying and tracking named, nominal, and pronominal mentions of entities within a text document. Our maximum entropy model for mention detection combines two pre-existing named entity taggers (built to extract different entity categories) and other syntactic and morphological feature streams to achieve competitive performance. We developed a novel maximum entropy model for tracking all mentions of an entity within a document. We participated in the Automatic Content Extraction (ACE) evaluation and performed well. We describe our system and present results of the ACE evaluation.