About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Biomaterials
Paper
Hydrogen bonding-enhanced micelle assemblies for drug delivery
Abstract
Ring-opening polymerization (ROP) of functionalized cyclic carbonates derived from 2,2-bis(methylol)propionic acid (bis-MPA) allows for incorporation of H-bonding urea-functional groups into block copolymers with a potential application of supramolecular drug-delivery systems. The strong H-bonding functionalities of poly(ethylene glycol)-block-poly(ethyl-random-urea carbonate) (PEG-P(E1-x-Ux)C) block copolymers not only lowered critical micelles concentration (cmc) of the block copolymer (to 1/4×) in aqueous environment compared to conventional PEG-poly(trimethylene carbonate) (PEG-PTMC) block copolymer without the non-covalent stabilization, but also improved kinetic stability of micelles and Dox-loaded micelles in the presence of a destabilizing agent. It was observed that the incorporation of anticancer drug doxorubicin affected the micellization process of block copolymers in water and caused a sudden increase in sizes of drug-loaded micelles above 200 nm. This phenomenon that can be a significant drawback in drug delivery applications was considerably mitigated in urea-bearing block copolymer/Dox micelles with simultaneously accompanying a significant improvement in drug loading. In vitro drug release profile showed that the increase in urea content led to a slight decrease in Dox release rate. Block copolymer did not have any significant cytotoxicity against HEK293 and HepG2 cells up to 400 mg/L. Importantly, Dox-loaded micelles exerted cytotoxic effect against HepG2 cells. © 2010 Elsevier Ltd.