About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Physical Chemistry
Paper
Hydrogen abstraction by benzophenone studied by holographic photochemistry
Abstract
Intermolecular hydrogen abstraction by benzophenone in a poly(methyl methacrylate) host is studied by using the new technique of holographic photochemistry. In this technique the temporal course of a photochemical reaction is followed by following the growth of a hologram resulting from the photochemistry. The photochemistry is found to involve two steps, each involving the absorption of two laser photons. In the first step a benzophenone triplet state abstracts a hydrogen atom from the host to produce a ketyl radical. This ketyl radical reacts with the host, producing a long-lived intermediate that is involved in the second step. The hydrogen abstraction reaction is found to occur only from a higher nπ* triplet state. No irreversible hydrogen abstraction occurs from the lowest nπ* or ππ* triplet state. © 1981 American Chemical Society.