About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Solid State Electronics
Paper
Hot electrons in SiO2: ballistic to steady-state transport
Abstract
We present a brief experimental and theoretical review of the properties of electron transport in thermally grown SiO2. In thick films (≳ 10 nm), steady-state transport is controlled by polar electron-phonon scattering at electric fields below 2 × 106 V/cm. At higher fields, nonpolar scattering prevents the electrons from "running away" and allows steady-state trnasport to occur at average electron energies of a few eV. In thinner films (≲ 6 nm), the "vacuum emission" technique performed at room temperature and 80 K allows the observation of ballistic transport and phonon replicas, in good agreement with Monte Carlo simulations. These results are used to investigate in detail the electron-lattice coupling constants that result from the almost ideal structural and electronic properties of thermally grown SiO2 films. © 1988.