About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIAM Journal on Computing
Paper
Hardness of approximation for vertex-connectivity network design problems
Abstract
In the survivable network design problem (SNDP), the goal is to find a minimum-cost spanning subgraph satisfying certain connectivity requirements. We study the vertex-connectivity variant of SNDP in which the input specifies, for each pair of vertices, a required number of vertex-disjoint paths connecting them. We give the first strong lower bound on the approximability of SNDP, showing that the problem admits no efficient 2 log1-εn ratio approximation for any fixed ε > 0, unless NP ⊆ DTIME(n polylog(n)). We show hardness of approximation results for some important special cases of SNDP, and we exhibit the first lower bound on the approximability of the related classical NP-hard problem of augmenting the connectivity of a graph using edges from a given set.