About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Electronic Materials
Paper
Growth of SiGe/Si quantum well structures by atmospheric pressure chemical vapor deposition
Abstract
First structural and electrical data are reported for SiGe/Si quantum well structures grown by a new ultra clean low temperature epitaxial deposition process at atmospheric pressure. It is found that the process suppresses the segregation of germanium, possibly by a chemical termination of the surface during the growth. Mutiple-quantum-well structures with controllable well widths and abrupt interfaces have been prepared at temperatures ranging from 550 to 650°C. Magneto-transport measurements of modulation doped quantum wells reveal hole mobilities of 2000 cm2/Vs at 4.2 K at a carrier density of 1.7*1012 cm-2 and a germanium concentration of 18% in the SiGe channel. Resonant tunneling diodes grown by this technique exhibit well resolved regions of negative differential resistance within a very symmetric I-V characteristic. © 1993 The Mineral,Metal & Materials Society,Inc.