Publication
Proceedings of the IEEE
Paper

Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays

View publication

Abstract

Complementary semiconductormetaloxide (CMOS) technology is a very powerful technology that can be more or less directly interfaced to electrogenic cells, like heart or brain cells in vitro. To this end, the cells are cultured directly atop the CMOS chips, which usually undergo dedicated postprocessing to obtain a reliable bidirectional interface via noble-metal microelectrodes or high-k dielectrics. The big advantages of using CMOS integrated circuits (ICs) include connectivity, the possibility to address a large number of microelectrodes on a tiny chip, and signal quality, the possibility to condition small signals right at the spot of their generation. CMOS will be demonstrated to constitute an enabling technology that opens a route to high-spatiotemporal-resolution and low-noise electrophysiological recordings from a variety of biological preparations, such as brain slices, or cultured cardiac and brain cells. The recording technique is extracellular and noninvasive, and the CMOS chips do not leak out any toxic compounds, so that the cells remain viable for extended times. In turn, the CMOS chips have been demonstrated to survive several months of culturing while being fully immersed in saline solution and being exposed to cellular metabolic products. The latter requires dedicated passivation and packaging techniques as will be shown. Fully integrated, monolithic microelectrode systems, which feature large numbers of tightly spaced microelectrodes and the associated circuitry units for bidirectional interaction (stimulation and recording), will be in the focus of this review. The respective dense microelectrode arrays (MEAs) with small pixels enable subcellular-resolution investigation of regions of interest in, e.g., neurobiological preparations, and, at the same time, the large number of electrodes allows for studying the activity of entire neuronal networks. Application areas include neuroscience, as the devices enable fundamental neurophysiological insights at the cellular and circuit level, as well as medical diagnostics and pharmacology. © 2010 IEEE.

Date

01 Jan 2011

Publication

Proceedings of the IEEE

Authors

Share