About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Grain-boundary energies and their interaction with Ta solute from self-diffusion in Au and Au-1·2 at. % Ta alloy
Abstract
It is shown that the difference in the free energy of activation for atoms diffusing in the lattice and in the grain-boundary is precisely the absolute grain-boundary energy. The self-diffusion data in Au in the lattice and along the grain-boundaries yielded excellent values of grain-boundary energies as a function of temperature. An addition of only 1·2 at. % Ta to Au was found to reduce the grain-boundary energies rather drastically. From the lowering of the grain-boundary energy, the solute excess at the grain-boundary was determined as a function of temperature which varied by over an order of magnitude in the 204°394°C range. An interaction energy of 5·6(±0·5) kcal/mole and entropy of 3·0 cal/mole K are determined for the Ta segregation on to the arbitrary high-angle grain-boundaries in Au. The grain-boundary energies and their solute interaction are discussed in the light of the available atomic models. © 1976 Taylor & Francis Group, LLC.