About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DAC 1999
Conference paper
Gradient-based optimization of custom circuits using a static-timing formulation
Abstract
This paper describes a method of optimally sizing digital circuits on a static-timing basis. All paths through the logic are considered simultaneously and no input patterns need be specified by the user. The method is unique in that it is based on gradient-based, nonlinear optimization and can accommodate transistor-level schematics without the need for pre-characterization. It employs efficient time-domain simulation and gradient computation for each channel-connected component. A large-scale, general-purpose, nonlinear optimization package is used to solve the tuning problem. A prototype tuner has been developed that accommodates combinational circuits consisting of parameterized library cells. Numerical results are presented.