About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 1989
Conference paper
Generalization of the Baum algorithm to rational objective functions
Abstract
The well-known Baum-Eagon inequality provides an effective iterative scheme for finding a local maximum for homogeneous polynomials with positive coefficients over a domain of probability values. However, in a large class of statistical problems, such as those arising in speech recognition based on hidden Markov models, it was found that estimation of parameters via some other criteria that use conditional likelihood, mutual information, or the recently introduced H-criteria can give better results than maximum-likelihood estimation. These problems require finding maxima for rational functions over domains of probability values, and an analog of the Baum-Eagon inequality for rational functions makes it possible to use an E-M (expectation-maximization) algorithm for maximizing these functions. The authors describe this extension.