About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Mathematical Physics
Paper
Gapped and gapless phases of frustration-free spin-1/2 chains
Abstract
We consider a family of translation-invariant quantum spin chains with nearestneighbor interactions and derive necessary and sufficient conditions for these systems to be gapped in the thermodynamic limit. More precisely, let ψ be an arbitrary two-qubit state. We consider a chain of n qubits with open boundary conditions and Hamiltonian Hn(ψ) which is defined as the sum of rank-1 projectors onto ψ applied to consecutive pairs of qubits. We show that the spectral gap of Hn(ψ) is upper bounded by 1/(n - 1) if the eigenvalues of a certain 2 × 2 matrix simply related to ψ have equal non-zero absolute value. Otherwise, the spectral gap is lower bounded by a positive constant independent of n (depending only on ψ). A key ingredient in the proof is a new operator inequality for the ground space projector which expresses a monotonicity under the partial trace. This monotonicity property appears to be very general and might be interesting in its own right. As an extension of our main result, we obtain a complete classification of gapped and gapless phases of frustration-free translation-invariant spin-1/2 chains with nearest-neighbor interactions.