About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
The fully dynamic planarity testing problem consists of performing an arbitrary sequence of the following three kinds of operations on a planar graph G: (i) insert an edge if the resultant graph remains planar; (ii) delete an edge; and (iii) test whether an edge could be added to the graph without violating planarity. We show how to support each of the above operations in O(n2/3) time, where n is the number of vertices in the graph. The bound for tests and deletions is worst-case, while the bound for insertions is amortized. This is the first algorithm for this problem with sub-linear running time. The same data structure has further applications in maintaining the biconnected and triconnected components of a dynamic planar graph.