About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
From droplets to nanowires: Dynamics of vapor-liquid-solid growth
Abstract
Starting with a liquid eutectic droplet on a surface, we calculate its dynamical evolution into an epitaxial nanowire via the vapor-liquid-solid growth process. Our continuum approach incorporates kinetic effects and crystalline anisotropy in a natural way. Some realistic features appear automatically even for an isotropic solid, e.g., the tapered wire base. Crystal anisotropy leads to a richer variety of morphologies. For example, sixfold anisotropy leads to a wire shape having broken symmetry and an intriguing resemblance to the 110-oriented Si wires seen in Au-catalyzed growth on Si (111), while higher symmetry leads to a shape more like 111 Si wires. © 2009 The American Physical Society.