About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Fluctuating local thermoelectric heat in dirty metals
Abstract
Using a recently developed multilead theory of dephasing in mesoscopic conductors, the mean-squared magnitude of the local Peltier heat in a uniform disordered metal is calculated diagrammatically. A heuristic estimate based on conductance fluctuation theory is also developed, and gives the same results. The generation and absorption of local thermoelectric heats require both phase-coherent elastic scattering to produce local conductance fluctuations and phase-breaking inelastic scattering to transport heat to and from the reservoirs. This phenomenon can cause substantial spatial variations in the electron temperature of low-carrier-density, clean, quasi-two-dimensional metals. © 1993 The American Physical Society.