About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
International Journal of Computational Geometry and Applications
Paper
Finding rectilinear paths among obstacles in a two-layer interconnection model
Abstract
Finding the best rectilinear path with respect to the bends and the lengths of paths connecting two given points in the presence of rectilinear obstacles in a two-layer model is studied in this paper. In this model, rectilinear obstacles on each layer are specified separately, and the orientation of routing in each layer is fixed. An algorithm is presented to transform any problem instance in the two-layer model to one in a one-layer model, so that almost all algorithms for finding rectilinear paths among obstacles in the plane can be applied. The transformation algorithm runs in O(e log e) time where e is the number of edges on obstacles lying on both layers. A direct graph-theoretic approach to finding a shortest path in the two-layer model, which is easier to implement is also presented. The algorithm runs in O(e log2 e) time.