About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
A nearest neighbor classifier is one which assigns a pattern to the class of the nearest prototype. An algorithm is given to find prototypes for a nearest neighbor classifier. The idea is to start with every sample in a training set as a prototype, and then successively merge any two nearest prototypes of the same class so long as the recognition rate is not downgraded. The algorithm is very effective. For example, when it was applied to a training set of 514 cases of liver disease, only 34 prototypes were found necessary to achieve the same recognition rate as the one using the 514 samples of the training set as prototypes. Furthermore, the number of prototypes in the algorithm need not be specified beforehand. Copyright © 1974 by The Institute of Electrical and Electronics Engineers, Inc.