About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CISS 2016
Conference paper
Fidelity loss in distribution-preserving anonymization and histogram equalization
Abstract
In this paper, we show a formal equivalence between histogram equalization and distribution-preserving quantization. We use this equivalence to connect histogram equalization to quantization for preserving anonymity under the k-anonymity metric, while maintaining distributional properties for data analytics applications. Finally, we make connections to mismatched quantization. These relationships allow us to characterize the loss in mean-squared error (MSE) performance of privacy-preserving quantizers that must meet distribution-preservation constraints as compared to MSE-optimal quantizers in the high-rate regime. Thus, we obtain a formal characterization of the cost of anonymity.