About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2006
Conference paper
Feature adaptation based on Baussian posteriors
Abstract
In this paper we consider the use of non-linear methods for feature adaptation to reduce the mismatch between test and training conditions. The non-linearity is introduced by using the posteriors of a set of Gaussians to (softly) partition the observation space for feature adaptation. The modeling framework used is based on the fMPE models [1] applied to FMLLR matrices directly. However, the parameters are estimated to maximize the likelihood of the test data. We observe a relative gain of 14% on top of FMLLR, which was a 42% relative gain over the baseline. © 2006 IEEE.