About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review A - AMO
Paper
Fault-tolerant quantum computation against biased noise
Abstract
We formulate a scheme for fault-tolerant quantum computation that works effectively against highly biased noise, where dephasing is far stronger than all other types of noise. In our scheme, the fundamental operations performed by the quantum computer are single-qubit preparations, single-qubit measurements, and conditional-phase (CPHASE) gates, where the noise in the CPHASE gates is biased. We show that the accuracy threshold for quantum computation can be improved by exploiting this noise asymmetry; e.g., if dephasing dominates all other types of noise in the CPHASE gates by four orders of magnitude, we find a rigorous lower bound on the accuracy threshold higher by a factor of 5 than for the case of unbiased noise. © 2008 The American Physical Society.