About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INTERSPEECH 2017
Conference paper
Fast neural network language model lookups at N-Gram speeds
Abstract
Feed forward Neural Network Language Models (NNLM) have shown consistent gains over backoff word n-gram models in a variety of tasks. However, backoff n-gram models still remain dominant in applications with real time decoding requirements as word probabilities can be computed orders of magnitude faster than the NNLM. In this paper, we present a combination of techniques that allows us to speed up the probability computation from a neural net language model to make it comparable to the word n-gram model without any approximations. We present results on state of the art systems for Broadcast news transcription and conversational speech which demonstrate the speed improvements in real time factor and probability computation while retaining the WER gains from NNLM.