About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TIP
Paper
Fast ℓ1-minimization algorithms for robust face recognition
Abstract
ℓ1-minimization refers to finding the minimum ℓ1-norm solution to an underdetermined linear system b=Ax. Under certain conditions as described in compressive sensing theory, the minimum ℓ1-norm solution is also the sparsest solution. In this paper, we study the speed and scalability of its algorithms. In particular, we focus on the numerical implementation of a sparsity-based classification framework in robust face recognition, where sparse representation is sought to recover human identities from high-dimensional facial images that may be corrupted by illumination, facial disguise, and pose variation. Although the underlying numerical problem is a linear program, traditional algorithms are known to suffer poor scalability for large-scale applications. We investigate a new solution based on a classical convex optimization framework, known as augmented Lagrangian methods. We conduct extensive experiments to validate and compare its performance against several popular ℓ1-minimization solvers, including interior-point method, Homotopy, FISTA, SESOP-PCD, approximate message passing, and TFOCS. To aid peer evaluation, the code for all the algorithms has been made publicly available. © 1992-2012 IEEE.