About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2003
Conference paper
Extending Q-learning to general adaptive multi-agent systems
Abstract
Recent multi-agent extensions of Q-Learning require knowledge of other agents' payoffs and Q-functions, and assume game-theoretic play at all times by all other agents. This paper proposes a fundamentally different approach, dubbed "Hyper-Q" Learning, in which values of mixed strategies rather than base actions are learned, and in which other agents' strategies are estimated from observed actions via Bayesian inference. Hyper-Q may be effective against many different types of adaptive agents, even if they are persistently dynamic. Against certain broad categories of adaptation, it is argued that Hyper-Q may converge to exact optimal time-varying policies. In tests using Rock-Paper-Scissors, Hyper-Q learns to significantly exploit an Infinitesimal Gradient Ascent (IGA) player, as well as a Policy Hill Climber (PHC) player. Preliminary analysis of Hyper-Q against itself is also presented.