About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ApJ
Paper
EXPONENTIAL DISKS from STELLAR SCATTERING. III. STOCHASTIC MODELS
Abstract
Stellar scattering off irregularities in a galaxy disk has been shown to make an exponential radial profile, but no fundamental reason for this has been suggested. Here, we show that exponentials are mathematically expected from random scattering in a disk when there is a slight inward bias in the scattering probability. Such a bias was present in our previous scattering experiments that formed exponential profiles. Double exponentials can arise when the bias varies with radius. This is a fundamental property of scattering and may explain why piece-wise exponential profiles are ubiquitous in galaxies, even after minor mergers and other disruptive events.