About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Chemical Senses
Paper
Expansive linguistic representations to predict interpretable odor mixture discriminability
Abstract
Language is often thought as being poorly adapted to precisely describe or quantify smell and olfactory attributes. In this work, we show that semantic descriptors of odors can be implemented in a model to successfully predict odor mixture discriminability, an olfactory attribute. We achieved this by taking advantage of the structure-to-percept model we previously developed for monomolecular odorants, using chemical descriptors to predict pleasantness, intensity and 19 semantic descriptors such as "fish,""cold,""burnt,""garlic,""grass,"and "sweet"for odor mixtures, followed by a metric learning to obtain odor mixture discriminability. Through this expansion of the representation of olfactory mixtures, our Semantic model outperforms state of the art methods by taking advantage of the intermediary semantic representations learned from human perception data to enhance and generalize the odor discriminability/similarity predictions. As 10 of the semantic descriptors were selected to predict discriminability/similarity, our approach meets the need of rapidly obtaining interpretable attributes of odor mixtures as illustrated by the difficulty of finding olfactory metamers. More fundamentally, it also shows that language can be used to establish a metric of discriminability in the everyday olfactory space.