About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
The Journal of Chemical Physics
Paper
Exciton scattering processes in (1,4)-dibromonaphthalene
Abstract
The dephasing of optically prepared k≈0 triplet excitons in crystalline (1,4)-dibromonaphthalene (DBN) has been investigated by measurement of the temperature dependence of the absorption line shape. At temperatures below 10 K the dephasing is due to scattering of the exciton by impurities or lattice defects. We show that the naturally occurring 13C containing DBN molecules can make a significant contribution to this linewidth. Above 10 K the excitons are scattered by optical phonons. The most likely exciton-phonon scattering process is shown to involve a single phonon scattering of the exciton between the two crystallographically inequivalent sites. Copyright © 1977 American Institute of Physics.