About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
FG 2002
Conference paper
Evaluation of Gabor-wavelet-based facial action unit recognition in image sequences of increasing complexity
Abstract
Previous work suggests that Gabor-wavelet-based methods can achieve high sensitivity and specificity for emotion-specified expressions (e.g., happy, sad) and single action units (AUs) of the Facial Action Coding System (FACS). This paper evaluates a Gabor-wavelet-based method to recognize AUs in image sequences of increasing complexity. A recognition rate of 83% is obtained for three single AUs when image sequences contain homogeneous subjects and are without observable head motion. The accuracy of AU recognition decreases to 32% when the number of AUs increases to nine and the image sequences consist of AU combinations, head motion, and non-homogeneous subjects. For comparison, an average recognition rate of 87.6% is achieved for the geometry-feature-based method. The best recognition is a rate of 92.7% obtained by combining Gabor wavelets and geometry features. © 2002 IEEE.